Testing bio fertilizers in Canada

Ralph Lett, head of product development at Acterra, was kind enough to share his microBIOMETER® experience with us. We love hearing the different ways our customers are using our soil test! Please contact us  if you would like to share your soil testing story.

“Thanks for taking an interest in how our company is using microBIOMETER®.

Acterra is a bio stimulant company. We work closely with our sales partner, Bio-Active. Together we capture and solubilize diesel emissions in a fusion tank and then add a beneficial consortium of facultative microbes . This is revolutionary as it allows the farmer to make his own biological fertilizers while he is seeding and/or harvesting.

microBIOMETER® is a handy tool for us to measure the microbial weight of our bio fertilizers when we come in off the fields to refill our tanks . The microbes in our fusion tank reproduce incredibly quickly, much faster than a regular brewing process. If the microbial populations grow too quickly things can get plugged up and can cause problems. This is where microBIOMETER® is incredibly useful. We use it to keep an eye on the populations in our tanks so that if over populations occur we can quickly drain the tank and start over .

We plan to continue working with microBIOMETER® in the future. Our hope is that one day farmers will be able to sit in their tractors and know exactly the microbial bio weight of their biological fertilizers while they are farming their fields.

Never stop innovating !” –  Ralph Lett

Soil carbon is a complex creature.

Soil carbon is important to soil health because it enables microbial life. Microbes are able to obtain carbon directly from plant exudates, however, much of their carbon source is from the dead plant and plant derived materials that they digest.  We harvest much of the above ground matter from crops, but plant roots, cover crops and various manures can provide additional sources of carbon and other nutrients for microbes.  Pure carbon, for instance coal, is not something we add to soil to increase fertility.  It is the soil organic carbon, the carbon originally derived from the living plant, animal and microbial sources, that predicts soil health. This is because it is food for microbes. Without fungi and bacteria making the glues that allow microbes to stick to soil and create soil texture, the soil becomes a powder that is easily eroded and does not hold water. Moreover, without microbes that are so tightly bound to the soil to store nutrients, the soil becomes barren.

Soil carbon begins as plant exudates and dead plant material and ends as humus, the molecular remnants of the bodies and refuse of dead animals and microbes that digested the plant material.  Newly broken-down plant material is close to the surface and available to microbes as soluble organic carbon.  Using this easily accessible carbon, microbes can multiply. Furthermore, carbon that is in microbes and other inhabitants of the soil food web can be viewed as a savings account.  Turnover in the food web is rapid and these materials are being recycled. As organic carbon molecules become in excess, i.e., they are not rapidly recycling, they attach themselves tightly to minerals and clay.  In this state they are more difficult for microbes to access. They begin to descend deeper into the soil becoming even more closely associated with soil particulate matter and can now be described as sequestered carbon.  The amount of carbon your soil can potentially sequester depends heavily on the particulate matter of your soil. Some soils can accumulate as much as 20% others probably less than 3%.   

Earth has surrendered 50% of its sequestered carbon to the atmosphere. How did this happen?  As a plant starts to grow, it sends out exudates that stimulate the dormant microbes to start multiplying and working to bring nutrients to the plant.  If there is insufficient soluble organic carbon available, the plant stimulated microbes will need to mine carbon from stored carbon sources.  Over many years of non-regenerative farming, the microbes have depleted this stored carbon.  Mineral fertilizers have replaced the microbes bringing minerals to the plants, but they do not provide carbon for microbial growth. Moreover, plants do not put out exudates for microbes when supplied with mineral nutrients – the stimulus for exudates is the need for minerals. The tragic outcome of low microbes is the loss of soil texture which leads to soil erosion and the inability of the soil to retain moisture.  

You need to have all forms of carbon for soil health; plant exudates to stimulate microbial growth, newly digested matter, soluble organic carbon for the population explosion, and stored carbon for the poor times when the microbes need to delve into their reserves.  You also need to store carbon by feeding the microbes carbon and replacing minerals in a manner that does not inhibit microbial growth.  Sequestered carbon is 60-80% the remains of dead microbes.  

The Role Microbes Play in Increasing Soil Fertility

soil fertility

The microbial population or microbial biomass (MB) reflects soil fertility. For over 2 million years, plants and soil microbes have worked together to create what we call fertile “soil”.

How do they work together? The plant supplies the microbes with carbon rich food. The microbes then mine the soil for the required minerals. Microbes can actually manufacture nitrogen and antibiotics that protect the plant from pathogens in return creating carbon stores that build soil structure and sequester carbon.

Like all good partners, what is good for one is good for the other, i.e., a healthy MB predicts a healthy plant. Therefore, supplying NPK directly to plants disrupts the plant microbe relationship – plants no longer feed the microbes and the MB decreases accordingly. Soils with low MB suffer from erosion, compaction, and poor structure. Sadly, this is how we have lost 50% of the earth’s soil.

Soil microbes, like all living things, need food. They need to be fed carbon and nitrogen from plants or organic matter so they can mine the minerals, P, K, Mg, Cu S etc. from the soil. If there is not enough of any nutrient, including the minerals that should be in the soil, it negatively affects the number of microbes; just as humans do not thrive when we are deficient in a critical nutrient.

Oxygen, water, and an agreeable pH and temperature are also important for soil microbes. Compacted soil is low in oxygen and microbial biomass. As soil dries, microbes die or become dormant. MB is much lower in low and high pH soils than in those that are in the neutral range. This is because most enzymes work best at neutral pH and all metabolism is enzyme dependent. MB also contracts during intense cold and heat. Plant roots require these same conditions

Microbes also need shelter to survive. Soil aggregates provide small cubbyholes that accommodate oxygen and water. It is in these areas where microbes attach themselves to be protected from predators. These predators are larger than they are; think of how little fish hide in coral. Not only are soil aggregates homes for microbes, they are homes built by microbes. The capsular material that microbes secrete to attach themselves to soil particles is long lasting. It binds the soil particles, therefore, creating aggregates that build soil structure and prevent erosion. These aggregates provide the water, oxygen and wiggle room needed by plant roots.

Furthermore, soil microbes build up carbon in the soil by producing humic matter. When microbes die, their bodies become stored carbon. This is good for microbes in the way that a savings account is good us. It is important for the soil as well because the humic matter increases soil structure. This allows more oxygen and water storage. It is also a resource that microbes can take a loan from before harvest when plant material is not being released to microbes. For too long we have relied on microbes borrowing from this humic carbon source and have released ½ of the soils stored carbon to the air as carbon dioxide. This has contributed to climate change and loss of 50% of earth’s soil. Microbes have always worked well with plants to create soil and they can help us restore exhausted soils back to fertility.

microBIOMETER® educating farmers in the Gulf Region on the importance of life in the soil.

Sustainable Organic Q8 was launched in mid-2018, educating people on recycling their organic waste, being environmentally aware and teaching people how to grow whatever and wherever they can. As far as gardening/farming styles, Sustainable Organic focuses on the value of the living soil and the soil food web and teaching home gardeners and farmers to slowly shift the general culture from MONOCULTURE, “Babysitting plants” and providing all their needs from nutrients to medicine to DIVERSITY, Building and regenerating an ecosystem that will take care of itself or at least be a bit less exhaustive and much more sustainable.

Sustainable Organic has helped bring diversity above grounds back to the region in the past couple years. However, many people are still very new to the life underground and living soil. Their gardening/farming practices rely heavily on providing nutrients and immunity/medicine to plants. To them it is cheap, it works, and they’re so set in their ways that the idea of change is becomes a source of anxiety.

Although more and more gardeners are praising the life in the soil, they also practice routine solarization and refuse to refrain from it, reflecting their hazy understanding of soil biology and the soil food web and what it really takes to construct. Testing the soil to most growers means checking nutrient availability, water content and pH.

For the sake of adding some objectivity to soil biomass and increasing the value of soil biomass testing, Sustainable Organic sent microBIOMETER® test kits to popular gardeners in Kuwait, Saudi and Dubai to experiment with by testing their soils and compost. These gardeners have a large number of followers and they educate via social media, gardening courses, and workshops. By starting to broadcast microBIOMETER® as a means of testing the biomass in the soil and amending it based on the readings received, Sustainable Organic intends to create a trend in the region shifting the focus more on the life in the soil than the mineral content.

“microBIOMETER® is an innovation that has made it possible to quantify the life in the soil. This economic tool, I believe, not only helps us improve our soil at the gardening/farming level, but it can also help us deepen our understanding and comprehension of the soil food web and the LIFE underground. This will ultimately lead to a tremendous positive change at the psychological and behavioral level.  It’s common to see people in our region praising the life in the soil (finally), but then professing solarization at the end of or the beginning of a grow season. This is an obvious clash in concepts that we hope are not deeply understood. We believe with popularizing the use of the microBIOMETER®, we can help clear the fog!

It’s beautiful to see people go out in the middle of the desert and start digging holes to “build” soil, plant trees and mulch around them; then announce seeing mushrooms and biologic diversity; start talking about soil biology, arbuscular fungi and carbon sequestration and tell farmers near them to try out the living soil method learned from Sustainable Organic. They say think globally and act locally. We intend to revive the desert in the Arabian Peninsula with Mother Earth and her fever at heart!”

About Dr. Jassem Bastaki. Originally from Kuwait, Jassem acquired his education in Head and Neck Endocrine Pathology in Pittsburgh, PA. In 2012, he left Pittsburgh to practice diagnostics and oncology in Kuwait and in doing so transitioned from fertile land to urban settings in some of the harshest climates in the world. The stress from his line of work led him back to gardening; indoors and hydroponic initially until he learned how to garden outdoors no matter the climate or conditions. Every second he spent with his plants taught him more and more about life and the reality we are unaware of. “We are guests on this earth with everything else that lives on it and in it.” The more he realized what was missing and where to find it, he wanted to help everyone find their way back to earth.

Jassem is a microBIOMETER® distributor in the Gulf Region as well as Iraq, Jordan and Egypt.

Soil Testing at the University of Louisiana at Lafayette

soil testing
University of Louisiana at Lafayette

Last semester Soil Science and Environmental Pedology students under a supervision of Dr. Anna Paltseva [annapaltseva.com] conducted a soil microbial experiment on campus of University of Louisiana at Lafayette. First, each of the group of students collected different samples. Samples were collected from lawn, vegetable containers, around tree pits, and a native plants garden. The soil samples were analyzed in accordance with the provided procedure, which is simple and fast. The microBIOMETER® app tested the samples and gave each of the readings. The readings were in microbial biomass expressed in microbial-carbon per gram of soil (ug/g) and fungal to bacteria ratio F:B, F% and B%.

The vegetable container and samples from the tree pits showed the highest range of 400 – 800 ug/g. This is due to high organic matter content. The low results from the lawns may have been due to limited microbiological diversity due to monoculture of grasses grown. The areas close to the water bodies (culvert, pond, etc.) may have been lower due to organic matter washing away over time. All the samples were predominantly rich in bacterial population over fungal.

“microBIOMETER® is a very efficient and time saving tool. It can be used by scientists, farmers, or a gardener in learning the microbial health of their soil. This testing process is also very non-invasive, and thus having a lesser negative environmental impact compared to traditional testing. One of the students said, It was pretty cool using an app to analyze soil. I want to know how it works since it all felt like magic.” – Dr. Anna Paltseva

Click here to view the student’s video.

Order a microBIOMETER® Academia Kit for soil testing in your classroom! 

If you are interested in Dr. Paltseva’s research or would like to learn more about urban soils, please follow her on Instagram.

soil testing
Microbial Biomass Chart
  • The chart above and text was prepared by Blair Miller.  It is based on the microBIOMETER® Test conducted on University of Louisiana at Lafayette campus.
  • Video prepared by Ethan Trahan demonstrating how students use microBIOMETER® Test on University of Louisiana at Lafayette campus.
  • Students appearing in the video from the School of Geoscience at the University of Louisiana at Lafayette include: Tristen Ashworth, Blair Miller, Sydney Renard, Austin Delaney, Andrew Womble, Susmita Shrestha, Isabelle Ordonez, Sherry Pinell, Kenneth Despain, and Ashton Young.

 

Microbial Biomass vs. Microbial Respiration

What is the difference between microbial biomass (MB) and microbial respiration rate (RR) ?

Both parameters are used to assess soil microbial health. The respiration assay measures the amount of carbon dioxide produced by the microbes in a given weight of soil. The soil is dried and then rewetted and put in an airtight jar that allows measurement of the amount of CO2 produced over 24 hours. The CO2 is produced by the activity of the microbes in the rewetted soil. Between 20% and 70% of the microbes die during drying but their dead bodies often provide nutrition for the survivors to use and regrow the population to its original level.

Respiration reflects the regrowing work that is being done. The respiration level is often mistakenly believed to predict microbial biomass (MB), but it does not. Microbes in a low pH or toxic soil have to work harder, therefore, their respiration rate is higher, just as your respiration rate in the gym is higher than when you are watching TV. Outside of the U.S. the respiration rate (RR) is only considered in relation to MB and this q-value RR/MB is used to determine the level of stress in a soil. If RR is high for the MB, the soil is in trouble.

MB, as measured by microBIOMETER®, correlates with chloroform fumigation—always and microscopic evaluation of soil. It is an excellent predictor of soil health because the size of the microbial population correlates with the nutrition available in the soil. If the soil is deficient in carbon, nitrogen, phosphorus or any other mineral, or contains toxins, MB will be low. In fact, MB is low in any soil that is compacted, has a low pH or is overly dry, because microbes need oxygen and moisture and the correct pH for enzymatic activity.

In nature, the plant uses 30% of its food production to feed a microbial population that will mine the soil for the N, P, K, S etc. that it needs. Interestingly MB is low in soil treated with high levels of mineral fertilizers; researchers have shown that the stimulus for the plant to grow a microbial population is its need for nitrogen and phosphorus. If these are artificially supplied the plant is not stimulated to feed the microbes that usually provide these nutrients to the plant. And since the microbes are at least half of the immune system of the plant, you now need lots of pesticides to protect the plant.

microBIOMETER® at Penn State University.

Left: “Intensive” section. Right: “Extensive” section

We began offering microBIOMETER® Academia Classroom Kits  last year and are excited with the interest we have received so far from universities, high schools and other academic institutions in the U.S. and abroad. Professors are utilizing our soil test to introduce their students to the world of microbes and soil health.

Mary Ann Bruns, Professor of Soil Microbiology at Penn State University  recently shared how students in her Soil Ecology class used microBIOMETER® to analyze microbial biomass in the 10-year-old Green Roof Medium of the Forest Resources Building on campus.

Students took composite samples from the “intensive” section (where rooting medium was originally 12 inches in depth) and the adjacent “extensive” section (depth of 4 inches). Samples were taken next to the blue fescue plants in both sections.

Having a deeper layer of growth medium provides more water and nutrients for plants, so the hypothesis was that samples from intensive (healthier) areas would have higher MBC than those from extensive (dried out) areas. Average depths were 7.1 and 3.8 inches, respectively, in intensive and extensive areas. Average MBC for the two areas were 253 and 159 micrograms per gram medium, respectively. Click here to read the full report.

A special thank you to Mary Ann and her students for sharing their research, data and photos! If you would like to share your student’s microBIOMETER® research in our newsletter or learn more about our Academia Classroom Kits, please contact us.

From left to right: Penn State students Tyler Gryskevicz, Amanda Grube and Jason Ben Legayada.

Carbon Sequestration

Increasing your soil microbes increases carbon sequestration. Carbon is stored in the soil as “humic materials” i.e. C,N,P,K etc.; rich organic matter which is the soil organic carbon or sequestered carbon in the soil. ­­­­­

The formation of humus, the final stable carbon, is a stepwise process. All organic carbon in soil comes from plants, either directly or via digested plant material. It starts with plant material being digested by soil microbes, or in the case of brown manure, being predigested by animals and further digested by microbes. The breakdown process begins with soil fungi and bacteria. As these microbes are fed carbon, they multiply. If fresh carbon stores are not utilized, they become attached to soil particles and become stored, therefore, less available as food sources. As microbes die, if they are not immediately cannibalized, their remains also become part of the more recalcitrant humic material.

Slowly, this humic material, which is as much as 80% the bodies of dead microbes, builds up. We measure it as soil organic carbon (SOC) and it reflects the carbon sequestered in the soil, but it also contains all the minerals and other plant nutrients. To increase SOC, the fresh organic matter required to feed the microbes and in turn the plant via the microbes, there needs to be an excess of the minimum required for a low microbial population. If there is an excess, the microbial population increases, and their dead bodies will increase the humic matter, in return increasing carbon sequestration. If it is not adequate, the soil microbes will be stimulated by the plant to mine the stored organic matter, which will decrease the stored carbon. It is not surprising that scientists have compared the plant/microbe/soil fertility index to economic models. A rich soil, like a rich man, has money in his pocket and money in the bank, for soil the currency is carbon.

This system is very much like our agricultural complex. There is fresh food, which we utilize within days, food we freeze or can, which requires freezers and can openers to access, and food stores (our sequestered carbon) that we maintain in silos as protection against disaster.

Agronomist in the U.K. assisting clients with soil health.

Source: Ben Taylor-Davies Twitter

Ben Taylor-Davies, also known as Regen Ben, is a farmer and bioagri-ecologist working from Herefordshire in the UK. His farm is based in Ross-on-Wye and has been focused on environmental improvements for the past 22 years. His work includes creating 12km of new hedges with 6m of pollen and nectar or ground bird nesting margins around every field as well as working on river meadow restoration.

Following a Nuffield scholarship in 2016 and the opportunity to travel the world (USA, Canada, Brazil, Argentina, Uruguay, Paraguay, Chile, Peru, South Africa, France, Belgium, Germany, Poland, Ukraine, Belarus, Russia, Mongolia, China, Singapore and Australia), Ben was intrigued by the regenerative agriculture movement which very much complimented the environmental work he was doing back on his own farm. When discussing these soil health focused farming methods with clients as an agronomist, it struck a chord with many of them too; the future of agriculture and real farm sustainability.

Ben came across microBIOMETER® in 2019 and found it an incredibly useful tool in benchmarking clients farms in order to start monitoring change in what they were doing. The real time results offered by microBIOMETER® provides Ben with full control over how, where and when he takes readings. Ben uses his microBIOMETER® readings in conjunction with the What3words app which allows him to accurately repeat measurements in subsequent years in order to build a picture of successes and failures.

Soil research using microBIOMETER®

In the spring and early summer of 2020, the Nutrient Management Spear Program at Cornell University conducted a soil survey of yield-stability based management zones on a New York dairy farm.

Ben Lehman, research assistant in the Nutrient Management Spear Program at Cornell University, completed a study on the Within- Field Variability of Soil Characteristics and Corn Yield Stability on a New York Dairy Farm.

Ben utilized microBIOMETER® in his research to determine the microbial biomass of the soil samples.

This study was presented at the 2020 American Society of Agronomy Annual Meeting.

Source: Cornell Center for Materials Research