microBIOMETER® testing for soil health and yield stability

Nature article reports that microbial biomass estimates by microBIOMETER® correlates with soil health and yield stability.

The microBIOMETER® soil test was used to report microbial biomass in a recent Nature publication*. Scientists Dr. Judith Fitzpatrick and Dr. Brady Trexler of microBIOMETER® collaborated with a University of Tennessee team headed by Dr. Amin Nouri. The team evaluated the effects on soil health and yield stability of 39 different methods of raising cotton over 29 years. The conditions tested included till, no-till, various cover crops and different levels of nitrogen fertilization.

The study found that the major impacts on yield were very dry or wet conditions, and low or high temperatures. The deleterious effects of these weather extremes on yield were mitigated by regenerative agricultural practices which resulted in adequate soil, C, N, soil structure and microbial biomass.

Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US

*Nouri, A., Yoder, D.C., Raji, M., Ceylan, S., Jagadamma, S., Lee, J., Walker, F.R., Yin, X., Fitzpatrick, J., Trexler, B. and Arelli, P., 2021. Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US. Communications Earth & Environment, 2(1), pp.1-12.

Community gardening with microBIOMETER®

Informal science education is a key for community engagement and healthy gardening. Community gardening  brings numerous benefits such as fresh produce, therapy, physical exercise, reduction in grocery bills, improvement of mood among many others.

“Last weekend I had the privilege to teach community gardeners on the importance of soil testing side by side with my very first student at NYBG Adult Education program (class 2015). Dr. Joan Basile is a clinical psychologist who has developed her own horticulture therapy program incorporating soil knowledge brining therapy & soil science & gardening together.” – Dr. Anna Paltseva,  soil_expert.

“While the microBIOMETER® results showed there is room for improvement, the result from last year’s beds also proved that composting and mulching practices are paying off in increased soil life. This means that sandy soil will gradually be able to hold nutrients better and better!” – Dr. Basile

microBIOMETER® Soil Testing in France

The Biospheres, working through the CDA*,  accompanies and trains farmers/agricultural companies in the agroecological transition based on a soil conservation approach. The group is also working on applied research projects and therefore on trials under real farming conditions in which they evaluate the impact of certain changes in practices on different indicators (biological, chemical, physical, economic).

“One of our primary objectives is that farmers succeed in putting biology back into their soils to ensure their natural fertility. We are therefore very interested in everything that lives in the soil, from earthworms and microarthropods to microorganisms (bacteria, fungi, nematodes). For us, microbial biomass is one of the most important indicators that help us understand soil biology. Fungal to bacterial ratio, which is a less documented indicator for the moment, remains interesting to observe in certain situations and is the object of real research by our R&D team to understand how best to interpret it.

We have been using microBIOMETER® for 8 months now to test the soil in different projects in our panel of biological indicators. microBIOMETER® provides us with quick and easy results on microbial biomass and F:B ratio which is a real plus for us. We can perform tests directly in the field and present the results to the farmers. Moreover, the affordable price of the analysis allows us to perform soil biology tests in projects where we had no affordable way to do so before.”

*CDA, Centre de Développement de l’Agroécologie, are affiliates dedicated to R&D and advisory.

 

 

Soil Carbon Q & A with Dr. Judy

soil carbon

We recently received the following questions from one of our customers and below are the responses from Dr. Fitzpatrick.

Part of my research is surrounding the soil organic carbon results we attained from microBIOMETER®, and I am wondering if someone from your team could provide more information on what this means relative to total organic carbon (TOC) in a sample and if they are comparable?

The literature shows a strong correlation between available organic carbon and microbial biomass carbon (MBC). Since your compost is not soil, the available organic carbon in your sample would be TOC and would correlate. MBC by microBIOMETER® is even better than that: a big number tells you that you have carbon and all the nutrients needed by microbes and plants.

Since MBC has correlations to TOC is there a formula or percentage to convert MBC to TOC? Or approximately how much MBC makes up a TOC number?

There is no formula to correlate TOC with MBC. TOC includes carbon that we consider stored as well as carbon that is easily available to microbes. Increasing easily available carbon for example by applying compost will increase microbes and eventually increase TOC, but as microbes rarely exceed 1% of TOC, it would have little effect on TOC short term. In long term stable systems we see a correlation but the correlation is not the same for example in forest as in agriculture as the capacity to store TOC is different soils under different conditions. In studying the effect of long term (40 years) different management systems at U. of TN on MBC and TOC, MBC by microBIOMETER® correlated with the TOC demonstrating the effectiveness of sustainable practice on increasing TOC and the positive correlation with MBC levels.

Does a high MBC usually mean a higher F:B ratio? And if so, could we draw any conclusions about carbon sequestration capabilities from that?

Generally as the MBC increases there is an increase in fungi. The soil food web is a balanced community. Some communities are more fungal dominated some less, but similar communities tend to have the same F:B ratio. It is generally believed that fungi, especially mycorrhizal fungi, contribute more to carbon sequestration than bacteria. This may be because glomalin is carbon rich and tends to sequester.

To further my understanding of soil/compost mixtures. I performed two microBIOMETER® tests. One test was on “active compost” which is compost in a medium stage of decomposition, and generates some CO2 and another one “finished compost” which is cured, ready for usage, and low CO2 production. However, I found that they had similar amounts of MBC and F:B ratio. Is this normal?

A study with microBIOMETER® at University showed a higher F:B in finished compost. The higher respiration/MBC indicates that your unfinished compost is still being digested — working microbes make more CO2. Holding MBC stable in your finished product is good.

 

Soil testing update from Brazil

Chiappetta Agricultural Company

We were excited to hear from our long-time customer Marcelo Chiappetta of  Chiappetta Agricultural Company on how his microBIOMETER® testing has been progressing. Below is what he shared with us.

“Here in southern Brazil the past 5 years we’ve been working with biological agriculture and changing the way we see and manage our farm; more and more like an agricultural organism. Taking care of microorganisms, plants, animals and humans and focusing on producing high quality grains.

Fungal and bacterial ratio is fundamental to know how our soil is related to what crop we grow. And now, after starting to brew compost tea and using compost extract, microBIOMETER® is helping us measure and understand the right recipe of carbon and nitrogen related to the amount of fungi that we want to build in our composts before adding to the soil. We see that good microbial biomass along with organic matter is excellent for our soils.

In practical terms, we see biological flowering in crop fields and this is the proof that we are doing a great job with nature. Our soil is our bioreactor, and we need to feed it with the right nutrients. The Brazilian biome is rich on biodiversity and as farmers and soil guardians we have a responsibility to bring life back to our farm again in a sustainable way of producing food.”

Click here to read more on Marcelo’s soil testing.

Improving soil health and carbon content

soil testing carbon
Soil testing

Modern agriculture practices have led to the systematic degradation of the world’s soil and release of carbon into the environment. The effects are increased need for expensive and environmentally dangerous inputs (fertilizers, pesticides, and herbicides), the loss of fertile top soil, decrease in water holding capacity of soil and dangerously high levels of atmospheric carbon.

Farmers, industry, and environmentalists are looking for cost-effective and reliable ways to measure soil health, to assess impacts of progressive changes on soil and harvest management, and to measure carbon in soil. Before microBIOMETER®, growers have traditionally relied on expensive lab testing of soil. Many current methods are technique and individual lab dependent. Therefore, run-to-run and lab-to-lab variation can greatly affect consistency leading to increased variability. Current methods are performed in labs and the soil is aged and changed from the time of collection. Furthermore, lab tests are difficult to use in developing countries as they can cost upwards of $500 per sample. This makes the test prohibitive to some markets and limits the number of times a grower can test their soil.

Our mission at Prolific Earth Sciences is to enable soil stewards all over the world to use mobile technology and our low-cost soil test to assess regenerative soil practices, to improve soil health, and work towards increased soil carbon sequestration. microBIOMETER® equips growers with the data necessary to make decisions on which practices are the most cost-effective. Inputs such as fertilizers are expensive and changes to practice are risky. Monitoring soil microbial biomass inexpensively, in real time, can help a soil steward quickly assess if an input and practice is improving soil health and worth the investment. In other words, assess before you invest! We also envision microBIOMETER® one day being a powerful tool in the measurement and audit of carbon sequestration programs.

microBIOMETER® has been on the market for over 3 years with direct and distributor sales and currently has customers in over 20 countries.

Testing bio fertilizers in Canada

Ralph Lett, head of product development at Acterra, was kind enough to share his microBIOMETER® experience with us. We love hearing the different ways our customers are using our soil test! Please contact us  if you would like to share your soil testing story.

“Thanks for taking an interest in how our company is using microBIOMETER®.

Acterra is a bio stimulant company. We work closely with our sales partner, Bio-Active. Together we capture and solubilize diesel emissions in a fusion tank and then add a beneficial consortium of facultative microbes . This is revolutionary as it allows the farmer to make his own biological fertilizers while he is seeding and/or harvesting.

microBIOMETER® is a handy tool for us to measure the microbial weight of our bio fertilizers when we come in off the fields to refill our tanks . The microbes in our fusion tank reproduce incredibly quickly, much faster than a regular brewing process. If the microbial populations grow too quickly things can get plugged up and can cause problems. This is where microBIOMETER® is incredibly useful. We use it to keep an eye on the populations in our tanks so that if over populations occur we can quickly drain the tank and start over .

We plan to continue working with microBIOMETER® in the future. Our hope is that one day farmers will be able to sit in their tractors and know exactly the microbial bio weight of their biological fertilizers while they are farming their fields.

Never stop innovating !” –  Ralph Lett

Soil Testing at the University of Louisiana at Lafayette

soil testing
University of Louisiana at Lafayette

Last semester Soil Science and Environmental Pedology students under a supervision of Dr. Anna Paltseva [annapaltseva.com] conducted a soil microbial experiment on campus of University of Louisiana at Lafayette. First, each of the group of students collected different samples. Samples were collected from lawn, vegetable containers, around tree pits, and a native plants garden. The soil samples were analyzed in accordance with the provided procedure, which is simple and fast. The microBIOMETER® app tested the samples and gave each of the readings. The readings were in microbial biomass expressed in microbial-carbon per gram of soil (ug/g) and fungal to bacteria ratio F:B, F% and B%.

The vegetable container and samples from the tree pits showed the highest range of 400 – 800 ug/g. This is due to high organic matter content. The low results from the lawns may have been due to limited microbiological diversity due to monoculture of grasses grown. The areas close to the water bodies (culvert, pond, etc.) may have been lower due to organic matter washing away over time. All the samples were predominantly rich in bacterial population over fungal.

“microBIOMETER® is a very efficient and time saving tool. It can be used by scientists, farmers, or a gardener in learning the microbial health of their soil. This testing process is also very non-invasive, and thus having a lesser negative environmental impact compared to traditional testing. One of the students said, It was pretty cool using an app to analyze soil. I want to know how it works since it all felt like magic.” – Dr. Anna Paltseva

Click here to view the student’s video.

Order a microBIOMETER® Academia Kit for soil testing in your classroom! 

If you are interested in Dr. Paltseva’s research or would like to learn more about urban soils, please follow her on Instagram.

soil testing
Microbial Biomass Chart
  • The chart above and text was prepared by Blair Miller.  It is based on the microBIOMETER® Test conducted on University of Louisiana at Lafayette campus.
  • Video prepared by Ethan Trahan demonstrating how students use microBIOMETER® Test on University of Louisiana at Lafayette campus.
  • Students appearing in the video from the School of Geoscience at the University of Louisiana at Lafayette include: Tristen Ashworth, Blair Miller, Sydney Renard, Austin Delaney, Andrew Womble, Susmita Shrestha, Isabelle Ordonez, Sherry Pinell, Kenneth Despain, and Ashton Young.

 

Microbial Biomass vs. Microbial Respiration

What is the difference between microbial biomass (MB) and microbial respiration rate (RR) ?

Both parameters are used to assess soil microbial health. The respiration assay measures the amount of carbon dioxide produced by the microbes in a given weight of soil. The soil is dried and then rewetted and put in an airtight jar that allows measurement of the amount of CO2 produced over 24 hours. The CO2 is produced by the activity of the microbes in the rewetted soil. Between 20% and 70% of the microbes die during drying but their dead bodies often provide nutrition for the survivors to use and regrow the population to its original level.

Respiration reflects the regrowing work that is being done. The respiration level is often mistakenly believed to predict microbial biomass (MB), but it does not. Microbes in a low pH or toxic soil have to work harder, therefore, their respiration rate is higher, just as your respiration rate in the gym is higher than when you are watching TV. Outside of the U.S. the respiration rate (RR) is only considered in relation to MB and this q-value RR/MB is used to determine the level of stress in a soil. If RR is high for the MB, the soil is in trouble.

MB, as measured by microBIOMETER®, correlates with chloroform fumigation—always and microscopic evaluation of soil. It is an excellent predictor of soil health because the size of the microbial population correlates with the nutrition available in the soil. If the soil is deficient in carbon, nitrogen, phosphorus or any other mineral, or contains toxins, MB will be low. In fact, MB is low in any soil that is compacted, has a low pH or is overly dry, because microbes need oxygen and moisture and the correct pH for enzymatic activity.

In nature, the plant uses 30% of its food production to feed a microbial population that will mine the soil for the N, P, K, S etc. that it needs. Interestingly MB is low in soil treated with high levels of mineral fertilizers; researchers have shown that the stimulus for the plant to grow a microbial population is its need for nitrogen and phosphorus. If these are artificially supplied the plant is not stimulated to feed the microbes that usually provide these nutrients to the plant. And since the microbes are at least half of the immune system of the plant, you now need lots of pesticides to protect the plant.

Soil research using microBIOMETER®

In the spring and early summer of 2020, the Nutrient Management Spear Program at Cornell University conducted a soil survey of yield-stability based management zones on a New York dairy farm.

Ben Lehman, research assistant in the Nutrient Management Spear Program at Cornell University, completed a study on the Within- Field Variability of Soil Characteristics and Corn Yield Stability on a New York Dairy Farm.

Ben utilized microBIOMETER® in his research to determine the microbial biomass of the soil samples.

This study was presented at the 2020 American Society of Agronomy Annual Meeting.

Source: Cornell Center for Materials Research