Community gardening with microBIOMETER®

Informal science education is a key for community engagement and healthy gardening. Community gardening  brings numerous benefits such as fresh produce, therapy, physical exercise, reduction in grocery bills, improvement of mood among many others.

“Last weekend I had the privilege to teach community gardeners on the importance of soil testing side by side with my very first student at NYBG Adult Education program (class 2015). Dr. Joan Basile is a clinical psychologist who has developed her own horticulture therapy program incorporating soil knowledge brining therapy & soil science & gardening together.” – Dr. Anna Paltseva,  soil_expert.

“While the microBIOMETER® results showed there is room for improvement, the result from last year’s beds also proved that composting and mulching practices are paying off in increased soil life. This means that sandy soil will gradually be able to hold nutrients better and better!” – Dr. Basile

microBIOMETER® Soil Testing in France

The Biospheres, working through the CDA*,  accompanies and trains farmers/agricultural companies in the agroecological transition based on a soil conservation approach. The group is also working on applied research projects and therefore on trials under real farming conditions in which they evaluate the impact of certain changes in practices on different indicators (biological, chemical, physical, economic).

“One of our primary objectives is that farmers succeed in putting biology back into their soils to ensure their natural fertility. We are therefore very interested in everything that lives in the soil, from earthworms and microarthropods to microorganisms (bacteria, fungi, nematodes). For us, microbial biomass is one of the most important indicators that help us understand soil biology. Fungal to bacterial ratio, which is a less documented indicator for the moment, remains interesting to observe in certain situations and is the object of real research by our R&D team to understand how best to interpret it.

We have been using microBIOMETER® for 8 months now to test the soil in different projects in our panel of biological indicators. microBIOMETER® provides us with quick and easy results on microbial biomass and F:B ratio which is a real plus for us. We can perform tests directly in the field and present the results to the farmers. Moreover, the affordable price of the analysis allows us to perform soil biology tests in projects where we had no affordable way to do so before.”

*CDA, Centre de Développement de l’Agroécologie, are affiliates dedicated to R&D and advisory.

 

 

microBIOMETER® featured in award-winning science fair project.

soil microbe testing
Ariel White; Post-Wildfire Forest Reboot Kit

Ariel White, a ninth grader at Pretty River Academy in Ontario, Canada, utilized microBIOMETER® in their science fair project titled Post Wildfire Forest Reboot Kit.

The project was awarded first place at their high school and chosen to compete at the Simcoe County Regional Science Fair. At the regional fair, Ariel was awarded a gold medal, Best of Earth and Environmental Sciences, Best of Fair, The Dufferin Simcoe Land Stewardship Network Award, and was one of seven students selected to represent their county in the Canada Wide Science Fair where they won a silver medal!

About the project: Forest fires have increased due to climate change, causing forests to burn down at an unbelievable rate. Now we need forests more than ever, yet they have been taking years if at all to regrow. This project explores the question “how can we boost the speed of forest regrowth after forest fires?”. For phase one of this experiment, each plant was graded for performance using tests such as success-rate, growth-rate, compost-value, and self-propagation. For the second phase, it was seen what effect this plant had on the soil microbiome; which is key to healthy, speedy plant growth and isn’t evident after fires. It was concluded that the morning glory substantially increased the microbiome health from inevident to healthy, and had an almost perfect performance score. These results are very important to our world’s future as they could help to deter climate change and repair our forests and their diverse ecosystems.

Improving soil health and carbon content

soil testing carbon
Soil testing

Modern agriculture practices have led to the systematic degradation of the world’s soil and release of carbon into the environment. The effects are increased need for expensive and environmentally dangerous inputs (fertilizers, pesticides, and herbicides), the loss of fertile top soil, decrease in water holding capacity of soil and dangerously high levels of atmospheric carbon.

Farmers, industry, and environmentalists are looking for cost-effective and reliable ways to measure soil health, to assess impacts of progressive changes on soil and harvest management, and to measure carbon in soil. Before microBIOMETER®, growers have traditionally relied on expensive lab testing of soil. Many current methods are technique and individual lab dependent. Therefore, run-to-run and lab-to-lab variation can greatly affect consistency leading to increased variability. Current methods are performed in labs and the soil is aged and changed from the time of collection. Furthermore, lab tests are difficult to use in developing countries as they can cost upwards of $500 per sample. This makes the test prohibitive to some markets and limits the number of times a grower can test their soil.

Our mission at Prolific Earth Sciences is to enable soil stewards all over the world to use mobile technology and our low-cost soil test to assess regenerative soil practices, to improve soil health, and work towards increased soil carbon sequestration. microBIOMETER® equips growers with the data necessary to make decisions on which practices are the most cost-effective. Inputs such as fertilizers are expensive and changes to practice are risky. Monitoring soil microbial biomass inexpensively, in real time, can help a soil steward quickly assess if an input and practice is improving soil health and worth the investment. In other words, assess before you invest! We also envision microBIOMETER® one day being a powerful tool in the measurement and audit of carbon sequestration programs.

microBIOMETER® has been on the market for over 3 years with direct and distributor sales and currently has customers in over 20 countries.

microBIOMETER® educating farmers in the Gulf Region on the importance of life in the soil.

Sustainable Organic Q8 was launched in mid-2018, educating people on recycling their organic waste, being environmentally aware and teaching people how to grow whatever and wherever they can. As far as gardening/farming styles, Sustainable Organic focuses on the value of the living soil and the soil food web and teaching home gardeners and farmers to slowly shift the general culture from MONOCULTURE, “Babysitting plants” and providing all their needs from nutrients to medicine to DIVERSITY, Building and regenerating an ecosystem that will take care of itself or at least be a bit less exhaustive and much more sustainable.

Sustainable Organic has helped bring diversity above grounds back to the region in the past couple years. However, many people are still very new to the life underground and living soil. Their gardening/farming practices rely heavily on providing nutrients and immunity/medicine to plants. To them it is cheap, it works, and they’re so set in their ways that the idea of change is becomes a source of anxiety.

Although more and more gardeners are praising the life in the soil, they also practice routine solarization and refuse to refrain from it, reflecting their hazy understanding of soil biology and the soil food web and what it really takes to construct. Testing the soil to most growers means checking nutrient availability, water content and pH.

For the sake of adding some objectivity to soil biomass and increasing the value of soil biomass testing, Sustainable Organic sent microBIOMETER® test kits to popular gardeners in Kuwait, Saudi and Dubai to experiment with by testing their soils and compost. These gardeners have a large number of followers and they educate via social media, gardening courses, and workshops. By starting to broadcast microBIOMETER® as a means of testing the biomass in the soil and amending it based on the readings received, Sustainable Organic intends to create a trend in the region shifting the focus more on the life in the soil than the mineral content.

“microBIOMETER® is an innovation that has made it possible to quantify the life in the soil. This economic tool, I believe, not only helps us improve our soil at the gardening/farming level, but it can also help us deepen our understanding and comprehension of the soil food web and the LIFE underground. This will ultimately lead to a tremendous positive change at the psychological and behavioral level.  It’s common to see people in our region praising the life in the soil (finally), but then professing solarization at the end of or the beginning of a grow season. This is an obvious clash in concepts that we hope are not deeply understood. We believe with popularizing the use of the microBIOMETER®, we can help clear the fog!

It’s beautiful to see people go out in the middle of the desert and start digging holes to “build” soil, plant trees and mulch around them; then announce seeing mushrooms and biologic diversity; start talking about soil biology, arbuscular fungi and carbon sequestration and tell farmers near them to try out the living soil method learned from Sustainable Organic. They say think globally and act locally. We intend to revive the desert in the Arabian Peninsula with Mother Earth and her fever at heart!”

About Dr. Jassem Bastaki. Originally from Kuwait, Jassem acquired his education in Head and Neck Endocrine Pathology in Pittsburgh, PA. In 2012, he left Pittsburgh to practice diagnostics and oncology in Kuwait and in doing so transitioned from fertile land to urban settings in some of the harshest climates in the world. The stress from his line of work led him back to gardening; indoors and hydroponic initially until he learned how to garden outdoors no matter the climate or conditions. Every second he spent with his plants taught him more and more about life and the reality we are unaware of. “We are guests on this earth with everything else that lives on it and in it.” The more he realized what was missing and where to find it, he wanted to help everyone find their way back to earth.

Jassem is a microBIOMETER® distributor in the Gulf Region as well as Iraq, Jordan and Egypt.

microBIOMETER® at Penn State University.

Left: “Intensive” section. Right: “Extensive” section

We began offering microBIOMETER® Academia Classroom Kits  last year and are excited with the interest we have received so far from universities, high schools and other academic institutions in the U.S. and abroad. Professors are utilizing our soil test to introduce their students to the world of microbes and soil health.

Mary Ann Bruns, Professor of Soil Microbiology at Penn State University  recently shared how students in her Soil Ecology class used microBIOMETER® to analyze microbial biomass in the 10-year-old Green Roof Medium of the Forest Resources Building on campus.

Students took composite samples from the “intensive” section (where rooting medium was originally 12 inches in depth) and the adjacent “extensive” section (depth of 4 inches). Samples were taken next to the blue fescue plants in both sections.

Having a deeper layer of growth medium provides more water and nutrients for plants, so the hypothesis was that samples from intensive (healthier) areas would have higher MBC than those from extensive (dried out) areas. Average depths were 7.1 and 3.8 inches, respectively, in intensive and extensive areas. Average MBC for the two areas were 253 and 159 micrograms per gram medium, respectively. Click here to read the full report.

A special thank you to Mary Ann and her students for sharing their research, data and photos! If you would like to share your student’s microBIOMETER® research in our newsletter or learn more about our Academia Classroom Kits, please contact us.

From left to right: Penn State students Tyler Gryskevicz, Amanda Grube and Jason Ben Legayada.

microBIOMETER® assisting farmers with regenerative agriculture around the world.

Sometimes the wisdom we need to build a great future is buried in the past. Regenerative agriculture isn’t an entirely new concept, it’s actually more of a return to the wisdom of farmers from days gone by. What’s old is new again and its popularity is spreading around the globe like a prairie fire.

While regenerative agriculture gives a well-earned nod to the past, its relationship with science and technology allows it to effectively transform the way we currently grow food. microBIOMETER®, with their customers all around the world, are leading the way with technology that shows farmers when their soil health practices are working and when they are not.

“I believe biological agriculture is the way to regenerate and create more resilient soil that will supply nutrients and higher immunity to the plants. This is why microBIOMETER® has become an invaluable asset to my soil management efforts.” ~ Marcelo Chiappetta of Chiapeta Empresa Agricola in Rio Grande do Sul, Brazil.

Creating healthy soil may take the wisdom of generations of farmers, but microBIOMETER® supplies the knowledge farmers need to best manage potential outcomes.

microBIOMETER® Soil Testing in New Zealand garden community

In learning how to develop healthy soil for healthy plants and people, Frans Plugge of New Zealand discovered the importance of increasing the fungi population in his garden and this led him to microBIOMETER®.

“The microBIOMETER® soil test makes measuring the fungi to bacteria ratio so easy,” Frans said. 

To promote the benefits of soil regeneration, Frans has started the community street garden using the principles of regenerative agriculture; minimizing artificial fertilizers, pesticides and herbicides.  Frans plans to take regular measurements of the fungi to bacteria ratio using microBIOMETER® to monitor his progress as well as create a great discussion point with members of the garden community, therefore, contributing to a healthy plant community.

Some of the microBIOMETER® results Frans shared with us for his home garden and compost:

  • Our compost.  1102 ug C/g, F:B 1.7:1
  • Veggie garden soil. 310 ug C/g  F:B 0.1:1
  • Purchased compost soil mix. 1299 ug C/g F:B 2.4:1
  • Soil from native bush. 469 ug C/g  F:B 0.8:1

The first photo pictured here is a bare clay strip that Frans forked loose but did not turn. He added a thin layer of garden compost along with a layer of soil sowing in ten different species of autumn crops; legumes, grasses, and cereals. Then he planted brassicas into the garden (second photo).

Over the years, Frans typically added compost and dug in green crop in the main vegetable garden, but had not had great success in yield. This autumn in the area the microBIOMETER® sample was taken from, he planted an autumn cover crop of 7-8 different species and a selection of brassicas amongst them. The idea is when the cover crop begins to go to seed, they cut at root level and drop as mulch (third photo).  Frans is hoping they can stop digging in an effort to build up healthy soil organisms.

Frans’ conclusions related to New Zealand’s potential to reduce its carbon footprint:

  • If all New Zealand farmers lifted their soil organic matter (SOM) by .25% per annum, we could offset all New Zealand’s annual GHG emissions including methane.
  • Globally, numerous farmers are lifting SOM by 0.5 – 1% per annum over many years.
  • Add in parks, recreation spaces, berms, gardens and Crown Land.

About Frans:

  • Completed his degree at Lincoln University in Valuation and Farm Management
  • Founded ECOsystems in 1995 with the vision “Saving Energy and the Environment” and the mission “To reduce energy consumption in commercial buildings by 50%”
  • Longstanding and current elected board member of the Carbon and Energy Professionals N.Z. (CEPNZ).
  • In 2018, established the Kata School to promote practices of continuous improvement that Toyota has used for 70 years. He is the current chair.
  • Attended and presented at Al Gore’s Climate Reality Leadership training in Brisbane and completedthe Kiss the Ground training on Regenerating Soils.
  • Currently focused on using the behaviours of Toyota Kata scientific thinking and experimenting towards a vision to develop the culture required to achieve the challenge of carbon positive.

Research shows microBIOMETER® correlates with crop health

Katharhy G. is an agroecosystem and ethnoscience researcher who traveled to Ecuador to investigate the relationship between microbial biomass and crop health, as well as to study the local indigenous agriculture practices.

He visited 28 different farms growing 15 different crops. 14 of these farms are practicing conventional farming, while the other 14 farms are practicing indigenous regenerative farming. Most sites are not receiving irrigation. He tested the soil with microBIOMETER® and ranked the crop health as poor (1), average (2), good (3), excellent (4).

As the graph shows, microbial biomass correlated with crop health under all these different conditions. Samples with microbial biomass lower than 225 were all poor (1) and samples above 400 were all excellent.

The take home lesson is that to improve your plant health and yield, increase your microbial biomass by feeding your microbes with organic amendments.

If you have microBIOMETER® research data you’d like to share with us, please contact us. We would love to share it with our readers!

Contact:. katharhyg@gmail.com

Soil Health Improvement Tracking

Microbial biomass (MB) is the best single indicator of soil health (Doran, 2000). Microbes feed and protect plants, build soil structure which prevents erosion, increase water holding capacity, and build soil organic matter (SOM). MB is low in any situation that is harmful to plant growth (and vice versa) and protects against pathogens, thereby reducing the need for pesticides. MB can predict success before plant outcome. The Fungal:Bacterial ratio (F:B) of the MB provides crucial information regarding colonization by Arbuscular Mycorrhizal Fungi (AMF), and the recycling metabolic processes of saprophytic fungi (SpF).

Soil stewards all over the world are seeking to understand the microbial levels in their soil and the ratio of fungal to bacterial life. The higher the microbial biomass, the more nutrients will be available to plants naturally, decreasing or eliminating the need for chemical fertilizers. Higher fungal to bacterial ratios are critical for building soil structure that prevents erosion and runoff off of pollutant chemicals while building moisture holding capacity of the soil and sequestering carbon.

Soil health is fast becoming one of the most important factors in agriculture and in the growing efforts to improve the earth’s stock of agricultural land. Farmers, industry, and environmentalists are looking for cost-effective and reliable ways to measure soil health and to assess impacts of progressive changes to soil and harvest management.

Testing soil in homogeneous sections at similar stages of the growth cycle can set a baseline for microbial biomass and fungal to bacterial ratio. That baseline can be used to assess how different stewardship practices are impacting the soil and allow for refinement to soil management plans and show soil health improvement over time. While every soil steward’s situation is unique, microBIOMETER® can help measure, follow, and assess efficacy of improvement to soil health.