soil carbon

We recently received the following questions from one of our customers and below are the responses from Dr. Fitzpatrick.

Part of my research is surrounding the soil organic carbon results we attained from microBIOMETER®, and I am wondering if someone from your team could provide more information on what this means relative to total organic carbon (TOC) in a sample and if they are comparable?

The literature shows a strong correlation between available organic carbon and microbial biomass carbon (MBC). Since your compost is not soil, the available organic carbon in your sample would be TOC and would correlate. MBC by microBIOMETER® is even better than that: a big number tells you that you have carbon and all the nutrients needed by microbes and plants.

Since MBC has correlations to TOC is there a formula or percentage to convert MBC to TOC? Or approximately how much MBC makes up a TOC number?

There is no formula to correlate TOC with MBC. TOC includes carbon that we consider stored as well as carbon that is easily available to microbes. Increasing easily available carbon for example by applying compost will increase microbes and eventually increase TOC, but as microbes rarely exceed 1% of TOC, it would have little effect on TOC short term. In long term stable systems we see a correlation but the correlation is not the same for example in forest as in agriculture as the capacity to store TOC is different soils under different conditions. In studying the effect of long term (40 years) different management systems at U. of TN on MBC and TOC, MBC by microBIOMETER® correlated with the TOC demonstrating the effectiveness of sustainable practice on increasing TOC and the positive correlation with MBC levels.

Does a high MBC usually mean a higher F:B ratio? And if so, could we draw any conclusions about carbon sequestration capabilities from that?

Generally as the MBC increases there is an increase in fungi. The soil food web is a balanced community. Some communities are more fungal dominated some less, but similar communities tend to have the same F:B ratio. It is generally believed that fungi, especially mycorrhizal fungi, contribute more to carbon sequestration than bacteria. This may be because glomalin is carbon rich and tends to sequester.

To further my understanding of soil/compost mixtures. I performed two microBIOMETER® tests. One test was on “active compost” which is compost in a medium stage of decomposition, and generates some CO2 and another one “finished compost” which is cured, ready for usage, and low CO2 production. However, I found that they had similar amounts of MBC and F:B ratio. Is this normal?

A study with microBIOMETER® at University showed a higher F:B in finished compost. The higher respiration/MBC indicates that your unfinished compost is still being digested — working microbes make more CO2. Holding MBC stable in your finished product is good.

 

Jeff Lowenfels

Jeff Lowenfels, a valued advisor and member of our Board, was recently featured in the New York Times Sunday Magazine article, He Wrote a gardening column: He ended up documenting climate change.

For 45 years Jeff has written a gardening column for the Anchorage Daily News and over this time has helped adapt Alaskan growers to their much longer growing season. And in doing so has become a documenter of climate change.

Jeff joined  Prolific Earth Sciences because he knew the only way to wean agriculture off synthetic fertilizers was to trust the microbes to deliver nutrients to plants. Jeff is the well-known author of the all-time best selling gardening book, Teaming with Microbes, as well as Teaming with Fungi, Teaming with Nutrients and DIY Cannabis all very readable, informative and available on Amazon.

soil microbe testing

Ariel White; Post-Wildfire Forest Reboot Kit

Ariel White, a ninth grader at Pretty River Academy in Ontario, Canada, utilized microBIOMETER® in their science fair project titled Post Wildfire Forest Reboot Kit.

The project was awarded first place at their high school and chosen to compete at the Simcoe County Regional Science Fair. At the regional fair, Ariel was awarded a gold medal, Best of Earth and Environmental Sciences, Best of Fair, The Dufferin Simcoe Land Stewardship Network Award, and was one of seven students selected to represent their county in the Canada Wide Science Fair where they won a silver medal!

About the project: Forest fires have increased due to climate change, causing forests to burn down at an unbelievable rate. Now we need forests more than ever, yet they have been taking years if at all to regrow. This project explores the question “how can we boost the speed of forest regrowth after forest fires?”. For phase one of this experiment, each plant was graded for performance using tests such as success-rate, growth-rate, compost-value, and self-propagation. For the second phase, it was seen what effect this plant had on the soil microbiome; which is key to healthy, speedy plant growth and isn’t evident after fires. It was concluded that the morning glory substantially increased the microbiome health from inevident to healthy, and had an almost perfect performance score. These results are very important to our world’s future as they could help to deter climate change and repair our forests and their diverse ecosystems.

Chiappetta Agricultural Company

We were excited to hear from our long-time customer Marcelo Chiappetta of  Chiappetta Agricultural Company on how his microBIOMETER® testing has been progressing. Below is what he shared with us.

“Here in southern Brazil the past 5 years we’ve been working with biological agriculture and changing the way we see and manage our farm; more and more like an agricultural organism. Taking care of microorganisms, plants, animals and humans and focusing on producing high quality grains.

Fungal and bacterial ratio is fundamental to know how our soil is related to what crop we grow. And now, after starting to brew compost tea and using compost extract, microBIOMETER® is helping us measure and understand the right recipe of carbon and nitrogen related to the amount of fungi that we want to build in our composts before adding to the soil. We see that good microbial biomass along with organic matter is excellent for our soils.

In practical terms, we see biological flowering in crop fields and this is the proof that we are doing a great job with nature. Our soil is our bioreactor, and we need to feed it with the right nutrients. The Brazilian biome is rich on biodiversity and as farmers and soil guardians we have a responsibility to bring life back to our farm again in a sustainable way of producing food.”

Click here to read more on Marcelo’s soil testing.

soil testing carbon

Soil testing

Modern agriculture practices have led to the systematic degradation of the world’s soil and release of carbon into the environment. The effects are increased need for expensive and environmentally dangerous inputs (fertilizers, pesticides, and herbicides), the loss of fertile top soil, decrease in water holding capacity of soil and dangerously high levels of atmospheric carbon.

Farmers, industry, and environmentalists are looking for cost-effective and reliable ways to measure soil health, to assess impacts of progressive changes on soil and harvest management, and to measure carbon in soil. Before microBIOMETER®, growers have traditionally relied on expensive lab testing of soil. Many current methods are technique and individual lab dependent. Therefore, run-to-run and lab-to-lab variation can greatly affect consistency leading to increased variability. Current methods are performed in labs and the soil is aged and changed from the time of collection. Furthermore, lab tests are difficult to use in developing countries as they can cost upwards of $500 per sample. This makes the test prohibitive to some markets and limits the number of times a grower can test their soil.

Our mission at Prolific Earth Sciences is to enable soil stewards all over the world to use mobile technology and our low-cost soil test to assess regenerative soil practices, to improve soil health, and work towards increased soil carbon sequestration. microBIOMETER® equips growers with the data necessary to make decisions on which practices are the most cost-effective. Inputs such as fertilizers are expensive and changes to practice are risky. Monitoring soil microbial biomass inexpensively, in real time, can help a soil steward quickly assess if an input and practice is improving soil health and worth the investment. In other words, assess before you invest! We also envision microBIOMETER® one day being a powerful tool in the measurement and audit of carbon sequestration programs.

microBIOMETER® has been on the market for over 3 years with direct and distributor sales and currently has customers in over 20 countries.

Ralph Lett, head of product development at Acterra, was kind enough to share his microBIOMETER® experience with us. We love hearing the different ways our customers are using our soil test! Please contact us  if you would like to share your soil testing story.

“Thanks for taking an interest in how our company is using microBIOMETER®.

Acterra is a bio stimulant company. We work closely with our sales partner, Bio-Active. Together we capture and solubilize diesel emissions in a fusion tank and then add a beneficial consortium of facultative microbes . This is revolutionary as it allows the farmer to make his own biological fertilizers while he is seeding and/or harvesting.

microBIOMETER® is a handy tool for us to measure the microbial weight of our bio fertilizers when we come in off the fields to refill our tanks . The microbes in our fusion tank reproduce incredibly quickly, much faster than a regular brewing process. If the microbial populations grow too quickly things can get plugged up and can cause problems. This is where microBIOMETER® is incredibly useful. We use it to keep an eye on the populations in our tanks so that if over populations occur we can quickly drain the tank and start over .

We plan to continue working with microBIOMETER® in the future. Our hope is that one day farmers will be able to sit in their tractors and know exactly the microbial bio weight of their biological fertilizers while they are farming their fields.

Never stop innovating !” –  Ralph Lett

Soil carbon is important to soil health because it enables microbial life. Microbes are able to obtain carbon directly from plant exudates, however, much of their carbon source is from the dead plant and plant derived materials that they digest.  We harvest much of the above ground matter from crops, but plant roots, cover crops and various manures can provide additional sources of carbon and other nutrients for microbes.  Pure carbon, for instance coal, is not something we add to soil to increase fertility.  It is the soil organic carbon, the carbon originally derived from the living plant, animal and microbial sources, that predicts soil health. This is because it is food for microbes. Without fungi and bacteria making the glues that allow microbes to stick to soil and create soil texture, the soil becomes a powder that is easily eroded and does not hold water. Moreover, without microbes that are so tightly bound to the soil to store nutrients, the soil becomes barren.

Soil carbon begins as plant exudates and dead plant material and ends as humus, the molecular remnants of the bodies and refuse of dead animals and microbes that digested the plant material.  Newly broken-down plant material is close to the surface and available to microbes as soluble organic carbon.  Using this easily accessible carbon, microbes can multiply. Furthermore, carbon that is in microbes and other inhabitants of the soil food web can be viewed as a savings account.  Turnover in the food web is rapid and these materials are being recycled. As organic carbon molecules become in excess, i.e., they are not rapidly recycling, they attach themselves tightly to minerals and clay.  In this state they are more difficult for microbes to access. They begin to descend deeper into the soil becoming even more closely associated with soil particulate matter and can now be described as sequestered carbon.  The amount of carbon your soil can potentially sequester depends heavily on the particulate matter of your soil. Some soils can accumulate as much as 20% others probably less than 3%.   

Earth has surrendered 50% of its sequestered carbon to the atmosphere. How did this happen?  As a plant starts to grow, it sends out exudates that stimulate the dormant microbes to start multiplying and working to bring nutrients to the plant.  If there is insufficient soluble organic carbon available, the plant stimulated microbes will need to mine carbon from stored carbon sources.  Over many years of non-regenerative farming, the microbes have depleted this stored carbon.  Mineral fertilizers have replaced the microbes bringing minerals to the plants, but they do not provide carbon for microbial growth. Moreover, plants do not put out exudates for microbes when supplied with mineral nutrients – the stimulus for exudates is the need for minerals. The tragic outcome of low microbes is the loss of soil texture which leads to soil erosion and the inability of the soil to retain moisture.  

You need to have all forms of carbon for soil health; plant exudates to stimulate microbial growth, newly digested matter, soluble organic carbon for the population explosion, and stored carbon for the poor times when the microbes need to delve into their reserves.  You also need to store carbon by feeding the microbes carbon and replacing minerals in a manner that does not inhibit microbial growth.  Sequestered carbon is 60-80% the remains of dead microbes.  

Graham Mackie, Golf Course Manager at Edzell Golf Course in the U.K., has been using microBIOMETER® to monitor the health of the soil on the greens. Here is what he had to say about our soil test.

“I really like microBIOMETER®. It is simple to use and for the first time I can get baseline readings to see what is effective and what is not in influencing soil biology. As a golf course manager I believe that swinging the F: B ratio in favor of the fungi will allow the dominant grasses to be the desirable perennials.

I took microBIOMETER® readings of the main 18- hole course as well as the small 9-hole course and the readings correlated with what I expected. The 9-hole greens have more poa annua, therefore, were more bacterial dominant. I also took a reading of an area of untouched fescue rough which was very fungal dominant, as expected. It was great to have this theory confirmed. I am now looking forward to see if and how I can swing the balance to more fungal dominance on the greens.”

A BIG thank you to Graham for sharing his testing experience with us!

soil fertility

The microbial population or microbial biomass (MB) reflects soil fertility. For over 2 million years, plants and soil microbes have worked together to create what we call fertile “soil”.

How do they work together? The plant supplies the microbes with carbon rich food. The microbes then mine the soil for the required minerals. Microbes can actually manufacture nitrogen and antibiotics that protect the plant from pathogens in return creating carbon stores that build soil structure and sequester carbon.

Like all good partners, what is good for one is good for the other, i.e., a healthy MB predicts a healthy plant. Therefore, supplying NPK directly to plants disrupts the plant microbe relationship – plants no longer feed the microbes and the MB decreases accordingly. Soils with low MB suffer from erosion, compaction, and poor structure. Sadly, this is how we have lost 50% of the earth’s soil.

Soil microbes, like all living things, need food. They need to be fed carbon and nitrogen from plants or organic matter so they can mine the minerals, P, K, Mg, Cu S etc. from the soil. If there is not enough of any nutrient, including the minerals that should be in the soil, it negatively affects the number of microbes; just as humans do not thrive when we are deficient in a critical nutrient.

Oxygen, water, and an agreeable pH and temperature are also important for soil microbes. Compacted soil is low in oxygen and microbial biomass. As soil dries, microbes die or become dormant. MB is much lower in low and high pH soils than in those that are in the neutral range. This is because most enzymes work best at neutral pH and all metabolism is enzyme dependent. MB also contracts during intense cold and heat. Plant roots require these same conditions

Microbes also need shelter to survive. Soil aggregates provide small cubbyholes that accommodate oxygen and water. It is in these areas where microbes attach themselves to be protected from predators. These predators are larger than they are; think of how little fish hide in coral. Not only are soil aggregates homes for microbes, they are homes built by microbes. The capsular material that microbes secrete to attach themselves to soil particles is long lasting. It binds the soil particles, therefore, creating aggregates that build soil structure and prevent erosion. These aggregates provide the water, oxygen and wiggle room needed by plant roots.

Furthermore, soil microbes build up carbon in the soil by producing humic matter. When microbes die, their bodies become stored carbon. This is good for microbes in the way that a savings account is good us. It is important for the soil as well because the humic matter increases soil structure. This allows more oxygen and water storage. It is also a resource that microbes can take a loan from before harvest when plant material is not being released to microbes. For too long we have relied on microbes borrowing from this humic carbon source and have released ½ of the soils stored carbon to the air as carbon dioxide. This has contributed to climate change and loss of 50% of earth’s soil. Microbes have always worked well with plants to create soil and they can help us restore exhausted soils back to fertility.

Sustainable Organic Q8 was launched in mid-2018, educating people on recycling their organic waste, being environmentally aware and teaching people how to grow whatever and wherever they can. As far as gardening/farming styles, Sustainable Organic focuses on the value of the living soil and the soil food web and teaching home gardeners and farmers to slowly shift the general culture from MONOCULTURE, “Babysitting plants” and providing all their needs from nutrients to medicine to DIVERSITY, Building and regenerating an ecosystem that will take care of itself or at least be a bit less exhaustive and much more sustainable.

Sustainable Organic has helped bring diversity above grounds back to the region in the past couple years. However, many people are still very new to the life underground and living soil. Their gardening/farming practices rely heavily on providing nutrients and immunity/medicine to plants. To them it is cheap, it works, and they’re so set in their ways that the idea of change is becomes a source of anxiety.

Although more and more gardeners are praising the life in the soil, they also practice routine solarization and refuse to refrain from it, reflecting their hazy understanding of soil biology and the soil food web and what it really takes to construct. Testing the soil to most growers means checking nutrient availability, water content and pH.

For the sake of adding some objectivity to soil biomass and increasing the value of soil biomass testing, Sustainable Organic sent microBIOMETER® test kits to popular gardeners in Kuwait, Saudi and Dubai to experiment with by testing their soils and compost. These gardeners have a large number of followers and they educate via social media, gardening courses, and workshops. By starting to broadcast microBIOMETER® as a means of testing the biomass in the soil and amending it based on the readings received, Sustainable Organic intends to create a trend in the region shifting the focus more on the life in the soil than the mineral content.

“microBIOMETER® is an innovation that has made it possible to quantify the life in the soil. This economic tool, I believe, not only helps us improve our soil at the gardening/farming level, but it can also help us deepen our understanding and comprehension of the soil food web and the LIFE underground. This will ultimately lead to a tremendous positive change at the psychological and behavioral level.  It’s common to see people in our region praising the life in the soil (finally), but then professing solarization at the end of or the beginning of a grow season. This is an obvious clash in concepts that we hope are not deeply understood. We believe with popularizing the use of the microBIOMETER®, we can help clear the fog!

It’s beautiful to see people go out in the middle of the desert and start digging holes to “build” soil, plant trees and mulch around them; then announce seeing mushrooms and biologic diversity; start talking about soil biology, arbuscular fungi and carbon sequestration and tell farmers near them to try out the living soil method learned from Sustainable Organic. They say think globally and act locally. We intend to revive the desert in the Arabian Peninsula with Mother Earth and her fever at heart!”

About Dr. Jassem Bastaki. Originally from Kuwait, Jassem acquired his education in Head and Neck Endocrine Pathology in Pittsburgh, PA. In 2012, he left Pittsburgh to practice diagnostics and oncology in Kuwait and in doing so transitioned from fertile land to urban settings in some of the harshest climates in the world. The stress from his line of work led him back to gardening; indoors and hydroponic initially until he learned how to garden outdoors no matter the climate or conditions. Every second he spent with his plants taught him more and more about life and the reality we are unaware of. “We are guests on this earth with everything else that lives on it and in it.” The more he realized what was missing and where to find it, he wanted to help everyone find their way back to earth.

Jassem is a microBIOMETER® distributor in the Gulf Region as well as Iraq, Jordan and Egypt.