Agronomist in the U.K. assisting clients with soil health.

Source: Ben Taylor-Davies Twitter

Ben Taylor-Davies, also known as Regen Ben, is a farmer and bioagri-ecologist working from Herefordshire in the UK. His farm is based in Ross-on-Wye and has been focused on environmental improvements for the past 22 years. His work includes creating 12km of new hedges with 6m of pollen and nectar or ground bird nesting margins around every field as well as working on river meadow restoration.

Following a Nuffield scholarship in 2016 and the opportunity to travel the world (USA, Canada, Brazil, Argentina, Uruguay, Paraguay, Chile, Peru, South Africa, France, Belgium, Germany, Poland, Ukraine, Belarus, Russia, Mongolia, China, Singapore and Australia), Ben was intrigued by the regenerative agriculture movement which very much complimented the environmental work he was doing back on his own farm. When discussing these soil health focused farming methods with clients as an agronomist, it struck a chord with many of them too; the future of agriculture and real farm sustainability.

Ben came across microBIOMETER® in 2019 and found it an incredibly useful tool in benchmarking clients farms in order to start monitoring change in what they were doing. The real time results offered by microBIOMETER® provides Ben with full control over how, where and when he takes readings. Ben uses his microBIOMETER® readings in conjunction with the What3words app which allows him to accurately repeat measurements in subsequent years in order to build a picture of successes and failures.

Soil research using microBIOMETER®

In the spring and early summer of 2020, the Nutrient Management Spear Program at Cornell University conducted a soil survey of yield-stability based management zones on a New York dairy farm.

Ben Lehman, research assistant in the Nutrient Management Spear Program at Cornell University, completed a study on the Within- Field Variability of Soil Characteristics and Corn Yield Stability on a New York Dairy Farm.

Ben utilized microBIOMETER® in his research to determine the microbial biomass of the soil samples.

This study was presented at the 2020 American Society of Agronomy Annual Meeting.

Source: Cornell Center for Materials Research

Variance in soil samples explained

Often, we are asked about variance – different results when you test the same sample. Our answer is that nature produces most of this variance. To explain, when you measure out 0.5 cc of soil, you have on average about 0.6 grams of soil. If your microBIOMETER® results read 300ugMBC/gram of soil, that means you have 600ug of microbial biomass – we divide the number we get by ½ because the literature tells us that 50% of the dried MB is carbon. As dried bacteria is estimated to weigh 1pg, if this were all bacteria, it constitutes 600,000,000pg or 600 million bacteria.

Now imagine that I have 600 apartment buildings in NYC that each contain 1 million people, and I decide to check 10 apartments in 10 buildings at 4 p.m. to estimate the number of people actually in the building. Obviously, it would vary because people are not always in their apartment and different apartments have different numbers of inhabitants – the same is true for soil.

Soil contains microscopic aggregates of different sizes and the number and type of inhabitants in each varies on the physical and chemical composition of the space as well as the nutrient, pH and hydration level. Each sample you take is like looking at a number of different apartments in a number of apartment buildings.

For this reason, when conducting research, soil and medical researchers run duplicates or triplicates. Because of cost, soil labs generally do not run duplicates and they see 10- 25% variation. We are recommending running duplicates when using microBIOMETER® unless you are doing academic research. Generally, we see <10% variation for a given sample, and for a field that looks homogeneous. Pastures can have much higher variation because the nutrients level across the area varies tremendously.

What is “priming” and how does it affect your soil?

Priming is currently a hot topic as it affects whether the fertilizer you are using is effective. For instance, when you prime a pump, the water you add allows the pump to start pumping water. If there is not enough water, you just wasted the priming water.

This is exactly what happens in your soil. When the microbes in the soil are fed nutrients “primed”, by the plant or amendment, it wakes them up and they start growing. But, whether they can continue to grow depends on the continual supply of nutrients. If there is enough balanced organic matter in the soil, they are fine. If not, the microbes will work hard to harvest some of the stored carbon, nitrogen and phosphorus in the soil. And instead of storing carbon in the soil, their labors will produce CO2.

A key point is “balanced” nutrition available in the fresh organic matter which is most available to microbes. Like us, if microbes do not have access to one of the key nutrients, e.g. N, P, S, K, Mg, Mn, B, etc. they cannot thrive. Clive Kirby’s group in Australia has demonstrated that by balancing the ratio of key nutrients in fertilizer regimens to bring the ratio of fresh organic matter to a C:N:P:S ratio of 10,000:261:32:48 they increased yield and substantially increased the stored soil carbon.

Source: Coonan, E.C., Kirkby, C.A., Kirkegaard, J.A., Richardson, A., Amidy, M. and Strong, C., 2020. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. NUTRIENT CYCLING IN AGROECOSYSTEMS, 117(3), pp.273-298.

Simple ways to increase the microbial biomass in your soil

Healthy soil is brimming with beneficial microbes, and those microbes are one of the important keys to ensuring the health of your plants. Along with breaking down key nutrients for your plants, they’ll aerate the soil so nutrients are evenly distributed, and fend off parasitic microbes so your garden can grow in peace.

Considering the wealth of benefits, it’s no surprise that it is recommended that you do everything you can to maximize the microbial biomass in your soil. While there’s complicated science behind it, nourishing and increasing the amount of microbes in your soil is simple, and can be accomplished with a few tried and true methods. And  thanks to the microBIOMETER®  soil test, even amateur gardeners can track their microbial biomass levels. 

First, let’s detail how you can take care of those important microbes and enhance their numbers. It’ll involve shedding some old gardening habits, along with taking on some new ones, but we promise the end results will be worth it. 

What To Avoid

Before you start taking extra steps to care for and increase your microbial biomass, you should ensure you’re avoiding certain tactics that are known to hinder their growth.

  • Pesticides

While you might think avoiding pesticides wouldn’t enhance plant health, a close look at the ingredients of most pesticides will show you they do far more harm than good. Amongst a variety of issues, one of the most harmful is the fact they decimate microbial populations in the soil. If you want to ensure pests will stay away in the absence of pesticides, try utilizing companion plants instead.

  • Fungicides

While pesticides are bad, fungicides are even more of a threat. Some of the most vital microbes in your soil, being fungi, would be directly targeted by these treatments. The harshness of these chemicals would also wreak havoc on the non-fungi microbes, all but eliminating any trace of a microbial biomass. Even if you can’t do everything on this list, ensure you at least abide by this particular rule. 

  • Tilling

Lastly, while many gardeners and farmers consider tilling a standard gardening process, you’ll want to abstain from it if you’re focusing on your soil’s microbes. That, of course, is due to the level of soil disturbance that occurs during the process. The process leads to lost microbes (especially fungi), and any benefits gained from additions made to the soil end up being cancelled out. By avoiding tilling, you’ll allow the delicate environment in your soil to function undisturbed and, in turn, at full capacity. 

What To Do

Now that you’ve cut those bad habits out of your gardening routine, you have room for a few that’ll greatly benefit your soil in the long run.

  • Composting

Nothing gets microbes into the soil like a nice big pile of compost! All that food breaking down in one big pile is basically a feast for all the helpful microbes you want around your plants. Once you add it onto your soil, then turn it to make sure air hits every part of it, you’ll be ensuring the microbes have plenty of energy to break down nutrients. To ensure the best compost possible, make sure you add in natural components like grass clippings, fruits, vegetables, wood chips, and straw. There’s no need to exclude other foods, even processed ones, but a healthy blend of green and brown material is a must. 

  • Compost Teas

Following the same logic, compost teas can do wonders for the microbes in your soil. All you have to do is take some compost and put it in a water permeable pouch,  add some microbe feeding nutrients (perhaps like molasses), and let it brew (bubbling air into it) until the microbes in the compost have multiplied and the tea is full of microbes. Once done, pour it all around the base of your plants. One round will do your plants good, but repeating this process a few times during your growing process will really make a difference.

  • Optimize soil moisture, pH, and temperature

This last step is actually three steps and if these conditions aren’t met, virtually nothing else on this list will have a noticeable effect. To start, making sure you have adequate moisture is as simple as regularly watering your plants. You may also want to consider purchasing a moisture meter to assure your levels are ideal. Next, the ideal pH range for soil is between 6.0 and 7.0, so you’ll have to test your soil to see where you’re at. If your soil pH is too low try adding limestone and if your pH is too high you can add aluminum sulfate and sulfur to get things balanced. Lastly, mulching is a great way to help your soil maintain an even temperature. 

Incorporating these simple tactics into your crop management is an important first step to building the microbial biomass in your soil. Another critical step is testing and quantifying the results of these inputs since decision making without data is like driving blindfolded. microBIOMETER® is a rapid, on-site soil test for microbial biomass. Microbes respond very quickly to any changes in the soil, therefore, you can set a baseline then retest within a week to see if you are heading in the right direction.

 

microBIOMETER® testing soil and compost in the Netherlands

With a small R & D grant awarded from the Dutch government, Jo Ploumen of the Netherlands is using microBIOMETER® to determine fungal to bacterial ratios in vermicompost filled in a Johnson-Su Bioreactor versus residence time. Jo also uses microBIOMETER® to measure microbes and F:B ratio in select soil samples as a member of a garden club. He found the differences by method of gardening; organic vs fertilizer and bare vs covered soil to be striking!

“I like microBIOMETER® as it is a cost-effective tool with a high impact, potentially,” Jo said.

Jo’s impressive resume includes studying Chemical Technology at the Technical University of Eindhoven, employment at multinational AKZO Nobel as an R & D specialist and co-founder of Pulsed Heat BV. In 2019, Jo founded Ploumen E.S. Compost to begin research based on the findings of Dr. David Johnson. Johnson is the developer of the Johnson-Su Bioreactor which delivers a compost with very unique properties.

We are honored to have Jo as a valued customer, data collector and partner on our journey to increase awareness of soil health, regenerative practices and carbon sequestration!

Photo source: Taos News